
www.manaraa.com

Key management for encrypted data storage in distributed systems
�

Ludwig Seitz Jean-Marc Pierson
Lionel Brunie

LIRIS, CNRS FRC 2672, INSA de Lyon
7, av. Jean Capelle, 69621 Villeurbanne cedex, FRANCE�

ludwig.seitz, jean-marc.pierson, lionel.brunie � @liris.cnrs.fr

Abstract

Confidential data stored on mass storage devices is at
risk to be disclosed to persons getting physical or admin-
istrator access to the device. Encrypting the data reduces
this risk, at the cost of more cumbersome administra-
tion. In this publication, we examine the problem of en-
crypted data storage in a grid computing environment,
where storage capacity and data is shared across orga-
nizational boundaries. We propose an architecture that
allows users to store and share encrypted data in this en-
vironment. Access to decryption keys is granted based on
the grids data access permissions. The system is there-
fore usable as an additional security feature together
with a classical access control mechanism. Data own-
ers can choose different tradeoffs of security versus
efficiency. Storage servers need not to be trusted and com-
mon access control models are supported.

Keywords: Secure storage, key management, access
control, distributed storage, grid storage

1. Introduction

A large variety of sophisticated protocols for secure
transfer of data over insecure networks exists today (e.g.
SSH[15], TLS[4], IPSec[8]). However most successful at-
tacks that result in disclosure of confidential data don’t oc-
cur while data is transmitted over a network. In fact data on
a mass storage device is a much easier target. Getting ac-
cess to such devices through social engineering, weak pass-
words or security holes in the access control system is a
relatively simple task compared to successfully intercept-
ing and interpreting a network communication.

� This work is partly supported by the Région Rhône-Alpes
and the French ministry for research ACI-GRID project
(http://www-sop.inria.fr/aci/grid/public/)

If we go one step further and enter the world of dis-
tributed or grid computing, where data may be stored out-
side the administrative domain of its owner, the problems of
secure storage and access control become even more obvi-
ous.

Grid access control mechanisms, as presented for exam-
ple in [13] and [1] only protect the data as long as the at-
tacker does not get physical or administrator access to the
storage system. If an attacker gets such access, all data is
freely accessible to him. However in some applications, for
example in medical data grids, protection against this risk
is required in addition to the usual access control mecha-
nisms, because of the sensitive nature of the data.

Bulk data encryption provides means of reducing the
above risk. Several programs exist that provide such ser-
vices for single file encryption (e.g. PGP[16]) or for en-
crypted file systems (see section 2). However key manage-
ment has always been a problem for sharing encrypted files.
The main reason for this is the longer lifetime required by
encryption keys for storage in contrast to keys for commu-
nication. They need to be securely stored and authorized
users must have a way to access them. A distributed en-
vironment like grid computing, where users from different
domains share storage space and data, adds a new level of
complexity to the problem. Indeed users may have to grant
access to confidential data to some other users not neces-
sarily of the same administrative domain. This raises the
question how authorized users will gain access to decryp-
tion keys for encrypted data and who will be responsible
of providing those keys. Therefore we need a key manage-
ment scheme, adapted to the grid environment. Authorized
users must be able to access decryption keys, even if the
data owner is from a different administrative domain. Data
owners must not be required to trust the data storage server,
since again it could be of a different administrative domain.
The system must be interoperable with the existing grid or
distributed access control mechanisms.

This article is organized as follows: Related work is pre-
sented in section 2. In section 3 we construct a model of our

1

www.manaraa.com

environment and use it to motivate our design goals. Section
4 explains our proposal of encryption key management. We
expand our proposal in section 4.6 to make it suitable for
distributed computing and to eliminate single points of fail-
ure. Section 5 summarizes the services that are required for
our proposal and their required capabilities. A discussion
of the drawbacks and the advantages of the presented sys-
tem follows in section 6. We conclude and summarize our
results in section 7.

2. Related Work

Current secure storage systems mainly provide one or
both of the following features: encrypted storage and se-
cure communication between storage device and the user.

CFS [2] provides encrypted storage at directory level for
a local file system. However no specific file sharing mech-
anism is provided, so that users must individually provide
the decryption keys if they want to share some of their files.
Therefore CFS ’as is’ is not suited to be used in distributed
environments with complex access control policies.

SFS by P. Gutmann1(As stated in [6], this is completely
unrelated to D. Maziéres SFS), provides encrypted storage
at disk volume level. An interesting feature is the emergency
key recovery mechanism which employs Shamir’s secret
sharing scheme [14] to distribute key shares to trusted es-
crow agents. As the system seems to be unsupported since
1996 and lacks encryption granularity and platform inde-
pendence it is not usable in distributed or grid environments.

Cepheus [6] enhances the functionalities of SFS[10] by
D. Mazières et al. to provide encrypted storage and commu-
nication as well as distributed file sharing mechanisms. File
sharing within a user group is managed by symmetric group
keys that are stored encrypted with the group members pub-
lic keys on a group database server. This may cause coordi-
nation problems in a distributed environment where groups
contain members from different administrative domains. If
such a group is managed by multiple authorities from the
different domains and membership changes dynamically,
keeping the group database up to date could quickly become
an administration nightmare.

SFS (Also completely unrelated to both other
homonyms) by J. Hughes et al. [7] provides encrypted stor-
age on single file level and key management for decentral-
ized access. The data is to be encrypted by the data producer
and to be decrypted by the data consumer, therefore elimi-
nating the need for encrypted communications. Accessing
is done with the help of a trusted group server. The file en-
cryption keys are encrypted with the group servers public
key and stored in the file header together with an ac-
cess control list (ACL). If a user wants to access an en-

1 http://www.cs.auckland.ac.nz/ � pgut001/sfs/

crypted file he will have to forward the header to the group
server, who will then use the ACL to determine if the user
has access to the file. The problem we see with this archi-
tecture in distributed or grid environments is the follow-
ing: If the access permissions (i.e. the header) of a file are
changed while a storage site with a replica of this file is of-
fline, this replica will still have the old access permis-
sions when it comes online again, therefore leading to
undesirable inconsistencies in the overall access permis-
sions.

3. Motivation

In this section we will first present some terminology we
use in our contribution, then we will give a short overview
of current access control models. From those we construct
a generic classification of access control decisions with re-
gard to the management of encryption keys and use this
classification to determine the requirements for key man-
agement systems in distributed or grid environments.

3.1. Notation

Definition 1 (Access control) The goal of access control
is to regulate the relations between users and resources by
defining which resources can be accessed by which users.

Definition 2 (Objects, subjects and administrators) The
users will be called access control subjects (or short sub-
jects) and the resources will be called access control
objects (or short objects). The entities that are autho-
rized to make access control decisions for some object
will be called object administrators (or short administra-
tors).

As encrypted storage only makes sense for data (in con-
trast with other resources as computing power and storage
space), we also limit access control objects to files in the
scope of this paper.

3.2. Access control models

To create our system we have to make some assump-
tions about the environment in which our system is to be
used. More specifically we need to take into account the ac-
cess control model that governs the environment. The en-
tity that administrates access rights also has to provide ac-
cess to the corresponding decryption keys and the key man-
agement scheme has to take into account all possible access
control decisions that can be taken by the access right ad-
ministrators.

We will examine the following access control models:

2

www.manaraa.com

� A simple discretionary access control (DAC) model,
where the owner of a file decides who gets access and
who doesn’t.

� A mandatory access control (MAC) model, where sub-
jects and objects are labeled with security levels. Sub-
jects may read objects of their security level and below
and may write to their security level and above.

� A role based access control (RBAC) model, where per-
missions are grouped into roles based upon the jobs to
be performed within the system. Subjects are assigned
the permission to take certain roles and to use the as-
sociated access permissions.

For more specific discussion of the presented access con-
trol models see [11].

3.3. Classification of access permissions

From the access control models presented in 3.2, we ob-
tain the following use cases for file access permissions:

� Simple access permission: The subjects and the objects
of the permission are known at the moment it is issued
and do not change dynamically. This is typically the
case in a DAC model. An example is the administra-
tor of a UNIX system who sets the ownership of a file
with the chown command. Figure 1 illustrates this set-
ting.

Permission

File or static set of files

Gives permission to

Allows access to

Uses to gain access

 or static user group
User

Data administrator

Figure 1. Simple access permission scenario,
subjects and objects of the permission are
known and static

� Object set permission: The subject of the permission is
known at the moment it is issued and does not change
dynamically. The object of the permission is a set of
files with dynamically changing content. This is typi-
cally the case in MAC and RBAC models. An exam-
ple is a government employee who is given a security
level to access a set of classified files on his agencies

computer system. New files will be labeled with a se-
curity level which will determine if they are accessi-
ble to that employee. Figure 2 exhibits this scenario.

Permission

objects
to / from

Adds or
removes

the set

Gives permission to

Allows access to

Dynamic set of files

Uses to gain access

User
or static user group

Data administrator

Figure 2. Object set access permission sce-
nario. Administrators of the object set may
dynamically change its contents.

� Subject group permission: The objects of the permis-
sion are known at the moment it is issued and do
not change dynamically, the subjects of the permis-
sion form a group with dynamically changing mem-
bership. Thus the individual subjects of the permission
are not known at the moment it is issued. This case can
be either set in a DAC or MAC or RBAC model. An
example out of an RBAC model would be a role that
is assigned some specific file access permissions (e.g.
all subjects who have the permission to use the role
programmer are authorized to write to the object pro-
gram code.c). We show an illustration of this case in
figure 3.

� Permission concerning a subject group and an object
set: Both subjects and objects of the permission are dy-
namically changing and are not individually known at
the moment the permission is issued. This can typi-
cally happen in a RBAC model. An example would be
a role medical researcher that is assigned the access
permission to a set of files anonymized patient data.
The set can be changed independently of the role def-
inition by adding new file or removing existing ones.
The permission to use the role can also be reassigned
without changing the role itself. This final case is illus-
trated in figure 4.

Please note here that all of these permission types may
of course contain conditions that are evaluated at run-time
and may therefore lead to a denial of access for an other-
wise authorized subject (e.g. in the permission “the subject

3

www.manaraa.com

Permission

Adds or removes
users to / from group

File or static set of files

Gives permission to

Allows access to

Uses to gain access

Dynamically changing
user group

Data administrator

Figure 3. Subject group access permission
scenario. Administrators of user group may
dynamically change its members.

Permission

objects
to / from

Adds or
removes

the set

Adds or removes
users to / from group

Gives permission to

Allows access to

Dynamic set of files

Uses to gain access

Dynamically changing
user group

Data administrator

Figure 4. Subject group to object set access
permission scenario. Membership in the sub-
ject group and the contents of the object set
may be dynamically changed by the adminis-
trators.

authentified as Alices doctor may access the object Alices
health record if he is logged onto a secure terminal”, being
logged onto a secure terminal would be a run-time condi-
tion). However this does not change the main conditions by
which above classification has been done, which is whether
subjects or objects are individually known when the per-
mission is issued. As those run-time conditions are evalu-
ated by the access control system which we intend to use,
we have not taken them into account any further.

3.4. Design goals

We pretend the four cases presented in section 3.3 cover
all possible file access control decisions in all three access
control models described in 3.2. Our global goal is to create
a scheme that allows the storage of, and access to encrypted
data on distributed, heterogeneous storage devices.

� We want our proposal to be interoperable with most ac-
cess control mechanisms without functional changes.
That means our key management service should not
require a change of the environment’s access control
model. It should be usable as an add-on and should be
able to run in mixed settings where a part of the data is
not stored encrypted.

� For reasons of vulnerability and to spare bandwidth
we want to minimize the use of third parties. In cases
where a third party is used, we want to minimize the
impact in the event it becomes corrupted.

� Subjects should have the responsibility of decrypting
the objects. It may first appear to be an advantage to
do the decryption independently from the subject and
to securely transfer the decrypted data to it. Revoking
access permissions would be more simple, since the
subjects would not have the encryption keys of objects
they are authorized to access. We decided against such
a solution since the decryption service would be an ac-
cess bottleneck and a dangerous source of vulnerabili-
ties, as it would have access to all decrypted data.

� We want to avoid a centralized administration of de-
cryption keys. Centralized services do not scale well
in distributed and grid environments, often becoming
bottlenecks and single points of failure. There must
be redundant possibilities of accessing the encryption
keys to reduce the risk of a denial of access and to pro-
vide for a good scalability.

� The user should not have to trust a single key adminis-
tration service. Since the entity providing this service
will probably be outside of the users administrative do-
main, he has no possibility to control if the service runs
correctly and is not corrupted. Therefore a single key
administration service should only have access to key
shares and not to complete keys.

4. Key management

Our key management scheme has to take into account
the four access scenarios we presented in section 3.3:

4.1. Simple access permissions

In this situation we have several possible situations:

4

www.manaraa.com

1. The subjects of the permission are online and no con-
ditions that have to be evaluated at run-time are part of
the permission.

2. At least one of the subjects of the permission is offline,
and no conditions that have to be evaluated at run-time
are part of the permission.

3. The permission involves conditions that are to be eval-
uated at run-time.

In the first case we choose to avoid using a third party and
transfer the keys to the subjects over a secure channel (this
may be an encrypted mail, or a direct connection secured by
SSL, SSH, IPSec or another secure communication proto-
col).

Figure 5 illustrates this procedure.
In the second case, one could consider storing the keys

encrypted with the subjects public key together with the ob-
jects. However this will lead to an increase of the objects
meta-data, which might be impractical if the number of sub-
jects having access to the object becomes large. Therefore
it seems to be a more scalable solution to store these keys
on a key server. This server must be capable of verifying the
access permissions and granting access to the keys if an au-
thorized user requests them. To avoid making the key server
a single point of failure, we propose duplication and secret-
sharing mechanisms in section 4.6 (we still use the singular
term key server to avoid complicating the expressions).

In the third case the key server becomes inevitable, as it
has to check the run-time conditions, before granting access
to the keys. Figure 6 illustrates the procedure of accessing
an object with the help of a key server.

4.2. Object set permissions

With object sets coming into play, the key of an indi-
vidual object is only known from the moment the object is
added to the set. Furthermore an entity adding objects to
the set may not know which subjects have access permis-
sions for that set.

Therefore the keys of objects being added to the set can
not be directly distributed to the subjects. They need to be
stored on a key server by the object administrator as de-
scribed in the previous section and illustrated in figure 6.

4.3. Subject group permissions

The subject group permissions again raise the same prob-
lem: the administrator can not know the individual subjects
concerned by the access control decision. They may change
after the decision has been made, as new members are added
to the group or old ones removed. Therefore the encryption
keys can not be distributed directly and again they have to
be stored on a key server.

When a subject of a group permission presents himself
to a key server he must prove that he indeed belongs to that
group. How this is done depends on the used access control
system. If a certificate based access control system like [13]
is used, this can be done without contacting another service,
thus reducing the required network traffic. The key server
can then decide if the group permissions allows access to
the requested keys.

4.4. Granting permissions to subject groups and
object sets

We now consider a case of permission where the objects
and subjects are dynamically changing.

At the creation of the permission all encryption keys of
files belonging to the object set have to be stored on the key
server. Depending on the access control system the permis-
sion might need to be registered at the key server, to allow
verification of key access requests.

If the administrator add new objects to the set he must
also provide the decryption keys to the key server.

Should new subjects be given group membership the key
server must be enabled to verify this new status. Again if we
have a certificate based access control system like in the ex-
ample in 4.3 this can be done by issuing a group member-
ship certificate to the subject.

4.5. Revoking permissions

When an access permission is revoked, the subject may
be able to keep copies of the unencrypted data or even the
keys he had access to. Even if this is not the case, there is no
way to prevent him from disclosing the content of the data
after he accessed it.

However it may be required, to prevent former subjects
from changing the object or reading new versions of it.
There are several ways to prevent this. The first is to re-
encrypt an object, when an access permission is revoked
and to update the key on the key server. This is cumber-
some and consumes a lot of computing power.

If the storage sites have an access control mechanism, we
can simply deny the access to the encrypted data on the stor-
age site and leave the encryption key unchanged. The sub-
ject may still get access to the data, if he gets administrator
access to the storage device.

An intermediate way would be to do a lazy update, where
re-encryption is delayed after a permission change, until the
concerned object is actually changed.

We believe that there is no best solution to the revoca-
tion problem. Therefore the system should provide the ad-
ministrators with the option to choose which of the three
presented solutions he wants to use. As our approach is de-
signed to be used in concert with a classical access control

5

www.manaraa.com

data
d.) user retrieves

secure tranfer mandatory:

secure transfer optional:

b.) Stores data on storage server

c.)Gives permissions to user
 and transfers key to user

Storage Server Data administrator

User

e.) Uses previously
aquired key to
decrypt data

a.) Encrypts data

Figure 5. Access procedure for a permission with no conditions evaluated at run-time, where sub-
jects and objects of the permission are known when it is issued.

g.) Uses previously acquired key
 to decrypt data

secure tranfer mandatory:

secure transfer optional:

b.) Stores data on storage server

Data administrator

e.) Retrieves data

f.) gets key from

a.) Encrypts data

User or user group

Storage server

Key server

key server

on key server

permissions to
user or user group

d.)Gives

c.) Stores key

Figure 6. Access procedure when the decryption keys of the accessed object are managed by a key
server

mechanism, the second option is to be used to minimize
consumption of computing power.

4.6. Avoiding single points of failure

In a distributed environment with lots of requests the key
server may become a communication bottleneck and even a

single point of failure. If a single key server holds the keys
to all objects in our environment, it will be a prime target for
attackers willing to compromise the system or more simply
to run a denial-of-service attack. It is therefore reasonable
to operate a network of distributed key servers.

We present two independent but interoperable propos-
als for distributing the key servers. The first one is intended

6

www.manaraa.com

to increase availability through replication and clustering of
the keys. The second proposal aims to reduce the risk of key
disclosure in the case a server becomes compromised.

4.6.1. Increasing availability The key server holds a set
of keys and some associated meta-data that allows it to asso-
ciate the keys to encrypted files and to check access permis-
sions. However there is no reason why a single key server
should hold all keys or why a key should be stored on one
single key server. Therefore keys are distributed and repli-
cated on different key servers.

In many application scenarios a natural way of doing this
distribution exists. An obvious solution would be to use the
semantic meaning of the objects they encrypt. For example
if we distribute keys to medical data based on the pathol-
ogy they describe subjects are more likely to access several
objects in one set than objects of several different sets. Fig-
ure 7 shows an example for a semantic distribution of med-
ical data.

surgical

Medical data:

optical

pharmacological

psychological

dental

Encrypted data: Key servers:

Figure 7. Example of semantic distribution of
medical data. The keys of different data sets
are stored on different key servers.

Therefore by distributing encryption keys on different
key servers the load is spread and multi-object requests nor-
mally do not require contacting more than one key server.

If no object sets exist or a finer distribution of the ob-
jects is required, this can be done by applying a hash func-
tion to the unique object identifier and creating (sub-)sets
of the objects by the result of this hash. This hash could be
as simple as taking the first characters of the object identi-
fier or more complex, if a more balanced distribution is de-
sired.

The remaining problem is how subjects can find the right
key server for the objects they want to access. The most nat-
ural way here, is to store this information together with ob-
ject meta-data on the storage site. As seen in figure 6, the
subject has to obtain the encrypted object on the storage
site before contacting the key server. So if we store the lo-
cation of the appropriate key servers in a data-base on the
storage site together with the encrypted data, they can be
easily found by a subject accessing the data.

Depending on the degree of availability we whish to ob-
tain, distribution of the key server alone may not be satisfac-
tory. The failure of one key server would still mean access
to the object sets it manages would not be possible. There-
fore the key server should be replicated mirroring its con-
tent to several identical servers.

4.6.2. Reducing vulnerability In grid computing, the en-
tities providing storage space are typically anonymous to
object administrators, as the grid middleware hides the com-
plexity of storage space allocation from them. In the same
way, the middleware should hide the management of differ-
ent key server from the object administrator. Therefore we
present a scenario where the object administrators have lim-
ited trust in the key server, and do not entrust the complete
key information to a single one.

Classical secret sharing mechanisms like [14] can be
used to divide single keys between several key server. An ar-
bitrary number � is chosen at the time a key is to be stored.
Then a number of key shares � � � is produced from that
key. These shares are distributed to � different key servers.
If an authorized subject wants to recover the key, he has to
gather � different key shares from the key servers. There is
no risk of key disclosure, as long as less than � key servers
are compromised. Figure 8 illustrates data access with the
use of key shares.

Key sharing combines well with key server replication.
Note that any combination of � different key shares will
enable a subject to reconstruct the key. Thus an object ad-
ministrator wishing to guaranty access to the key even if �
key servers break down, simply has to chose the number �
of key shares he generates as ��������� and distribute them
on � different key servers.

If the number of objects that are handled within the sys-
tem is relatively small, key sharing may make the distribu-
tion of keys on servers by object sets unnecessary. How-
ever both still combine without problems, if we distribute
key servers by object sets first and then by different share
servers.

5. Implementation Issues

We will now summarize services that have to be cre-
ated to implement the proposed scheme and we describe

7

www.manaraa.com

Storage Server Data administrator

User or user group

Key Serverssecure transfer optional:

secure tranfer mandatory:

a.) Encrypts data
and creates

shares on
different

and addresses of
e.) Retrieves data

g.) Reconstructs key

decrypts data

the key servers

from key shares and

f.) gets key shares
from the key servers

key servers

key shares

 the key servers on the storage server
c.) Stores data and addresses of

b.) Stores key

permissions to
user or user group

d.)Gives

Figure 8. Access procedure when shares of the decryption keys are stored on different key servers.

Grid access control

management service
Meta data

interface
User

User

Administrator
interface

Object administration
tool

Data administrator

Key server
functions

Key server

Storage server

Figure 9. Deployment diagram of the services required for the key management architecture

the functionalities these services must offer. Figure 9 shows
the deployment of those services.

5.1. Key servers

A key server can authentify itself to any administra-
tor, using a certificate signed by a trusted authority and a

8

www.manaraa.com

challenge-response protocol.
It operates a database to store and retrieve the key shares.

This database is a local service which requires a password
or similar authentication to access. It should not be accessi-
ble by other services than the key server.

The key server can authentify users requesting key shares
with the same mechanism it uses to authentify itself. It is
also able to make access control checks to determine if a re-
quest for a key share should be granted. This key share ac-
cess control must be coordinated with the general data ac-
cess control services.

Revocation of access rights is to be handled by ’push’-
type key server updates (i.e. the entity revoking an access
right actively sends the information to the key servers). Key
servers actively update their access rights in a ’pull’-manner
after an offline period. This is done by contacting other key
servers. To make this updates fault tolerant and to prevent
deliberately wrong updates coming from a corrupted key
server multiple key servers are contacted and only permis-
sions that are coherent on a majority of the key servers are
updated.

The key servers provide secure communication services
to transmit key shares and updates of access rights over in-
secure networks. Either TLS/SSL, SSH or IPSec shall be
used for those.

Figure 10 summarizes the functions of a key server.

auth_self()
auth_user()
retrieve_share()
store_share()
check_permission()
update_permissions()

Key server

Figure 10. Functionality of a key server.

5.2. The object administration tool

In order to store objects, their administrator needs a spe-
cial tool that will encrypt the object, create the key shares
and distribute them over different key servers.

Optionally the object administration tool can add a dig-
ital signature to the encrypted object to ensure the object
integrity. The administration tool shall rely on certification
authorities to provide the public keys needed to check those
signatures.

The object administrator can prevent denial of access to
objects by creating multiple replicates of the objects on dif-
ferent storage sites.

Depending on the use of the objects, different symmet-
ric encryption algorithms are recommendable. In software,
stream ciphers like ARC4 or SEAL are at least twice as
fast as block ciphers like the AES2. However, if we want to
change a part of an object encrypted with a stream cipher,
we will have to decrypt the whole object, whereas block ci-
phers in ECB (electronic code book) mode permit to de-
crypt and change single blocks of the data separately. For
more details on cipher algorithms refer to [12].

The tool is local and controlled by the object administra-
tor, since it handles the unencrypted versions of the object
and the object administrator needs to trust it.

Figure 11 summarizes the functionality of the object ad-
ministration tool.

Object administration

encrypt_object()
auth_user()

sign_object()
generate_keyshares()

store_object()

delete_object()

store_keyshares()

delete_keyshares()

tool

Figure 11. Functionality of the object admin-
istration tool.

5.3. The user interfaces

For ease of use all services shall provide simple inter-
faces and hide most of the complexity of their operations to
the users. Both the administrator and the data access inter-
face shall be single sign-on (i.e. a user should only have to
authentify himself once during a session).

In the case of the administrator interface, the user should
only have to select between storing and deleting data, as
well as granting and revoking access rights. The different
configuration options (number of key shares, used ciphers,

2 In a test with the Crypto++ library on a 1.9 GHz Pentium 4, ARC4
encrypted at a rate of 24 MB/s, SEAL at 60 MB/s and the AES with a
128-bit key at 10 MB/s

9

www.manaraa.com

replication etc) shall be accessible to him, but default op-
tions shall be provided.

The data access interface should hide the different steps
of an access operation, such as contacting the key servers,
reconstructing the keys, downloading the data and decrypt-
ing it. From the point of view of the user it should only per-
form three distinct functions: Authentication of the user at
the start of a session, update of known permissions, search-
ing and retrieving data. The search and retrieve function
will temporarily pass control to other distributed or grid ser-
vices to perform the functions unrelated to security. The ac-
cess interface shall store retrieved encryption keys locally
to speed up further requests for the same data. This stor-
age shall of course be encrypted and protected by the initial
authentication at the start of a session.

Figure 12 shows the functions of both administrator and
user interfaces. The administrator interface will use the ob-
ject administration tool for functions concerning the en-
crypted storage and key management. Both will also use
other services (i.e. the access control service, data storage
service) provided by the distributed environments infras-
tructure.

Administrator

revoke_access_right()
grant_access_right()
delete_object()
store_object()
auth_user() auth_user()

update_permissions()
retrieve_object()

User
interface interface

Figure 12. Functionality of the administrator
interface and the user interface.

5.4. The access control system

Depending on the access control system, modifications
may be necessary to keep the key servers access permis-
sions up to date. In our certificate-based access control ex-
ample from section 4.3, the key server must know the types
and structures of the certificates used and must be able to
verify their signatures. Thus no modification of the access
control system itself is necessary.

6. Discussion

In this section we discuss the drawbacks and advantages
of the proposed system, with special attention to distributed
and grid computing environments.

The drawbacks of the system come principally from the
functions that have to be performed by the key servers.

� Contacting different key servers before being able to
decrypt a file slows down the access procedure.

� As the key servers are partially trusted third parties,
an attacker may gain access to encryption keys if he
manages to corrupt multiple key servers. Setting the
number of key shares needed for reconstruction high
enough and careful administration of the key servers
should minimize this risk.

� To provide links to corresponding key shares some
amount of meta-data needs to be stored together with
encrypted data. However most grid environments re-
quire some meta-data for data storage anyway. There-
fore this should only be a minor administrative prob-
lem.

� The key servers have to manage access to the key
shares and thus indirectly the access to the en-
crypted files. Therefore certain access control mecha-
nisms may make it necessary to update the key servers
access control information, every time an access per-
mission is issued or changed. However all current ac-
cess control mechanisms adapted to distributed or
grid environments [13], [1], [9], [3] allow decentral-
ized access permission checking. We therefore believe
that this problem will only appear with ill-chosen ac-
cess control mechanisms.

The system has the obvious advantage of eliminating
the need to trust the storage servers. Additionally we have
found the following advantages to our design:

� Aside the transfer of the meta-data to locate corre-
sponding key servers, the design requires no additional
interaction with the storage servers.

� The size of the meta-data required on the storage
servers is minimal (addresses of the key servers).

� The system is designed to be interoperable with com-
mon access control mechanisms. It can be used option-
ally and does not exclude unencrypted storage of less
sensitive files on the same system.

� Together with distributed or grid access control mecha-
nisms the key-server architecture allows for distributed
and fine grained access control decisions from differ-
ent independent administrative domains.

� The key sharing mechanism makes the system tolerant
to limited key server breakdowns. It also ensures that

10

www.manaraa.com

the corruption of a single key server will not create a
major security breach.

We think that the advantages provided by our architec-
ture outweigh the loss of performance it will cause. We in-
tend to implement our proposal to measure effects of the ad-
ditional network traffic it creates. However one must keep in
mind that it is always difficult to evaluate performance loss
against additional security gained. This is also the main rea-
son why our design enables administrators to choose which
tradeoff is the best for their needs.

7. Conclusion

We have presented the problem of managing keys for
encrypted data storage in distributed or grid environments.
We showed that access control management in such envi-
ronments has to deal with problems that are not treated by
classical encrypted storage systems. These problems come
from the fact that access permissions may involve users and
data from different administrative domains. We detailed the
problems arising from user groups and data sets adminis-
trated by multiple authorities from different domains.

Our key management architecture is adapted to those
problems and was designed to be easy to add onto com-
mon distributed or grid access control systems. It can man-
age variable granularities of access permissions and can be
parameterized to fit the security needs of different data ad-
ministrators.

We plan to implement this key management architecture
for the MEDIGRID3 project, using the hDSEM[5] and the
grid access control system proposed in [13]. With this im-
plementation we will be able to measure the delay caused
by contacting the key servers. Another interesting question
would be to determine reasonable parameters for the set-
tings of our system (number of key shares, number of key
servers, number of data replicas etc).

References

[1] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello,
Á. Frohner, A. Gianoli, K. Lörentey, and F. Spataro. VOMS,
an authorization system for virtual organizations. In Pro-
ceedings of the 1st European Across Grids Conference, 2003.

[2] M. Blaze. A cryptographic file system for UNIX. In
ACM Conference on Computer and Communications Secu-
rity, pages 9–16, 1993.

[3] D. Chadwick and A. Otenko. The permis x.509 role based
privilege management infrastructure. In Proceedings of the
seventh ACM symposium on Access control models and tech-
nologies, 2002.

3 http://creatis-www.insa-lyon.fr/MEDIGRID

[4] T. Dierks and C. Allen. The TLS protocol version 1.0.
Technical report, The Internet Engineering Task Force IETF,
1999. http://www.ietf.org/rfc/rfc2246.txt.

[5] H. Duque, J. Montagnat, J. Pierson, L. Seitz, L. Brunie,
and I. Magin. An architecture for large scale and high
performance medical imaging applications. Available from
http://hectorduque.free.fr/recherche/tdPapers.html.

[6] K. Fu. Group sharing and random access in cryptographic
storage file systems. Master’s thesis, Massachusetts Institute
of Technology, 1999.

[7] J. Hughes, C. Feist, S. Hawkinson, J. Perrault, M. O’Keefe,
and D. Corcoran. A universal access, smart-card-based, se-
cure file system. In Proceedings of the 3rd annual Atlanta
Linux Showcase, 1999.

[8] IPSec Working Group. IP security protocol (ipsec). Techni-
cal report, The Internet Engineering Task Force IETF, 2002.
http://www.ietf.org/html.charters/ipsec-charter.html.

[9] K. Keahey and V. Welch. Fine-grain authorzation for re-
source management in the grid environment. In Proceedings
of the 3rd International Workshop on Grid Computing, 2002.

[10] D. Maziéres. Security and decentralized control in the SFS
global file system. Master’s thesis, Massachusetts Institute
of Technology, 1998.

[11] R. Sandhu and P. Samarati. Access control: Principles and
practice. IEEE Communications Magazine, 32(9):40–48,
1994.

[12] B. Schneier. Applied Cryptography: Protocols, Algorithms,
and Source Code in C, Second Edition. John Wiley & Sons,
1995.

[13] L. Seitz, J. Pierson, and L. Brunie. Semantic access control
for medical applications in grid environments. In Euro-Par
2003 Parallel Processing, volume LNCS 2790, pages 374–
383. Springer, 2003.

[14] A. Shamir. How to share a secret. In Communications of the
ACM, volume 22, pages 612–613, 1979.

[15] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and
S. Lehtinen. SSH protocol architecture. Techni-
cal report, The Internet Engineering Task Force IETF,
2002. http://www.ietf.org/internet-drafts/draft-ietf-secsh-
architecture-13.txt.

[16] P. Zimmermann. The Official PGP User’s Guide. MIT Press,
1995.

11

